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Phase behavior of confined symmetric binary mixtures
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We employ mean-field lattice density functional theory to investigate the phase behavior of a Bira)y (
mixture confined to nanoscopic slit pores with chemically homogeneous walls. We consider only nearest-
neighbor interactions in symmetric mixtures, whepg = egg# €pg and e is a measure of attraction between
molecules of like(subscriptsAA andBB) and unlike speciessubscriptAB), respectively. In addition, mol-
ecules are exposed to short-range attraction by the substrates separattattiog planes where,y is the
relevant coupling parameter. Moreover, the chemical potentials of both components are the sameythat is,
=ug=pm. In thermodynamic equilibriuni{for fixed temperaturel and chemical potentiak) the grand-
potential densityw[ p,m] (p={p1, . .. .p;}, m={mq, ... m,}) assumes a global minimum which we find by
minimizing o numerically with respect to the order pare1met;ar§p,AJrp|B (total local density and m,
E(p|A—p|B)/p| (local “miscibility” ) at lattice pland parallel to the pore walls. By varying,g three generic
types of bulk phase diagrams are observed. On account of confinéneenby varyinge,, as well asz) one
may switch between these different types of phase diagrams. This may have profound practical repercussions
for experimental nanophase separation since depending on pore width and chemical nature of its walls a bulk
gas mixture may undergo capillary condensation and form either a stable mixed or demixed liquid phase.
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[. INTRODUCTION Carlo simulations to investigate wetting of solid surfaces by
binary-mixture filmg24]. In GCEMC simulations by Kierlik
The phase behavior of pure fluids and their mixtures inet al.[25], the impact of independently varying the chemical
confined geometries is currently receiving a lot of experi-potentialsu, and ug of both components is investigated.
mental and theoretical attentigfor a recent review see Ref. These authors observe that mere confinement by nonselec-
[1]). Experimentally one is usually concerned with confiningtive substrates causes selective adsorption of the dilute com-
solid matrices of either low porosity like porous glassesponent.
[2—8] or high porosity like silica gelf9—12]. These systems Besides computer simulations density functional calcula-
are studied by a variety of techniques including light or neu+ions[25,26 and integral—equation approachgg,28 have
tron scattering5,6,9—11, measurements of nonlinear dielec- also been employed to investigate properties of confined bi-
tric phenomend4], and of the heat capacif?]. Typical pore  nary mixtures. Piziet al.[26] are concerned with the effect
widths range from 1 to 100 nm. of polydispersity in hard-sphere mixtures, whereas Trokhym-
Theoretically, a variety of model binary mixtures has beenchuk et al. [27] focus on chemical reactions. In both cases
investigated within the framework of different techniques.the mixture is confined to nanoscopic slits. On the contrary,
Most of these works are concerned with so-called symmetriSchdl-Paschinger and co-workers consider a random porous
mixtures characterized by identical interactions between likenatrix formed by immobile hard spheres of a given number
molecules of both species. Several theoretical studies focugensity[28] which serves as a suitable model for experimen-
on domain growth during phase separation in confined getal situations where the confining matrix is a porous glass.
ometry[13—-2Q which is described by a power law in three- Another powerful theoretical tool are self-consistent field
dimensional systemgl9]. By means of computer simula- calculationd29] which have been used by Bindet al. [30]
tions associating fluid mixtures are investigated withto study symmetric binary polymer blends in confinement.
particular emphasis on the formation of hydrogen bonds Unlike these previous works, we are concerned here with
[17]. Within the framework of Monte Carlo simulations in a systematic study of the phase behavior of binary mixtures
the grand canonical ensemiil8CEMOC), Gozdzet al. deter-  composed of simple fluids confined to ordered nanoporous
mined aspects of the phase diagram of a binary mixture imatrices. Examples of such materials are MCM-41 or
slit pores that are in thermodynamic equilibrium with a de-SBA-15 silicas that can relatively routinely be synthesized
mixed bulk mixture[21]. Also by means of GCEMC, Cush- [31] and in which sorption isotherms can be measured rela-
man and Curry studied binary mixtures of “simple” fluids tively easily[32]. To determine the phase behavior of binary
confined between nanoscopically corrugated substrate sumixtures in such nanoscopic pores theoretically we extend a
faces[22,23. In their system the substrates are decorategrevious study by Bockt al, who were concerned with pure
with rectilinear grooves promotinpartial) solidification of  fluids, to the case of symmetric binary mixtuf@s]. In Ref.
the confined mixture. Grabowslet al. employed Monte [33], lattice density functional theory is employed to inves-
tigate the interplay between surface-induced and
confinement-induced phase transitions in slit pores with
*Electronic address: dirk.woywod@fluids.tu-berlin.de chemically patterned substrates. In addition to discretization
"Electronic address: martin.schoen@fluids.tu-berlin.de of configuration space, Bockt al. treat the(intrinsic) free-
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energy functional at mean-field levigd3] which is believed From Eq.(2.1) it is straightforward to work out expres-
to be sufficiently realistic as far as first-order phase transisions for the total number of sité$,(s) andNg(s) occupied
tions are concernelB4]. by molecules of specieA andB, respectively. One obtains

In this work, we focus exclusively on the impact of the L LR
degree of confinemert.e., the pore widthand the strength _ = _- 2
of the fluid-substrate attraction on the phase behavior of con- Na(9=3 g‘l .2‘1 (St 1)se1=7 g‘l Z‘l (Sici k)
fined binary mixtures of specie& and B, say. Like most (2.29

previous workers, we restrict ourselves to symmetric mix- 0 N

tures characterized by an equally strong attraction between B 1 5

like molecules of either species. Moreover, we focus exclu- Na(s)= gl ,21 (S=Dsa=3 gl ,Zl (i1 Sk),

sively on the caseua= ug. Thus, mixture properties come (2.2

about only by varying the attraction strength between unlike

molecules. For such somewhat simplistic mixtures Wildingsuch that

et al. determined the bulk phase behav|[@5]. While also n oz

using a mean-_ﬁeld approach, W|Id|nv.g al. are concemeq N(s)=NA(s)+NB(s):E z Si,l 2.3

with an off-lattice mode[35]. Depending on characteristic k=11=1

ranges of theA-B attraction strength they find three dis- o . i )

tinctly different generic types of phase diagratsse Fig. 1 IS 'Fhe total nu_mber otbccup_ledsnes in a given configuration

in Ref.[35]). We will show here that the same generic typesS (i-., for a given occupation—number pattern

of bulk phase diagrams are observed in lattice models, too. Moreover, it is straightforward to verify that the total

Moreover, we shall demonstrate that on account of mere corifumber of molecules of speciésat either substrate is given

finement it is possible to switch from one type of these phas@y

diagrams to another which may have profound consequences 1 n

I(r)iI:(QEUId_IIqUId nanophase separation in ordered porous ma- Naw(S) = > kzl [(1+8 DS+ (1+S Sz, (2.8
The remainder of this paper is organized as follows. In _ _ o

Sec. II, we outline the theoretical framework where, in par-Which follows from considerations similar to the ones lead-

ticular, we introduce the lattice-gas model in Sec. Il A anding t0 Eq.(2.28. Thus, the total number of molecules of

develop its mean-field treatment in Sec. Il B. The solution ofSPeciesB at the substrate is given by

our model proceeds numerically. We outline the numerical 1 n

procedure in.Sgc. . Its key ingred!ent are analytical solu- Npw(S) = — 5 > [(1—Sc DSkt (1—S¢,)Sk 2]

tions at vanishing temperature which we discuss in Sec. k=

Il A, whereas Sec. Ill B is devoted to the more general case (2.9

of solutions for nonvanishing temperatures. Results are sum- . . .

marized in Sec. IV, where we begin in Sec. IV A with a brief  Similarly, one can work out expressions for the number

discussion of bulk phase diagrams. Sections IV B and IV CVaa (Neg) of A-A (B-B) pairs, that is, directly connected

are given, respectively, to analyses of confinement effect%ites both of which are occupied by a molecule of spesies
and confinement-controlled decomposition of binary mix-(B)- These somewhat more involved expressions are given
y

tures. In Sec. V, we summarize our key findings.

N| -

n z

1
Il. THEORY Nan(9)=5 gl ;1 Ski(1+s¢))
A. Lattice model

Sii+1(1+ S +1)

Consider a binary A-B) fluid mixture confined to a slit
. + + + +
pore whose substrate surfaces are planar and chemically ho- Sii-1(1+S1-1) mZJl Sm,1(1+Sm,)
mogeneous. To simplify the treatment, we discretize space
such that positions of molecules are restricted toARenz (2.63
sites of a simple-cubic lattice, whose lattice constant.is Nz
The position of a fluid molecule on the lattice may then be N _
v . . S)= S i(1—s
specified by a pair of integerk), where =k=n labels 58(9) kzl 21 ki 1)
NN(K)
TS-1(1=s¢ 1)+ mE:l Sm,l(l_sm,l):|y

NN(K) }

Sk 1+1(1 =Sk +1)

| =

the position in thex-y plane and ¥I|=<z determines the
position of this plane relative to the substrate surfaces. Ac-
cordingly, we introduce thenXz matrix s of occupation

numbers whose elements are given by (2.6b

+1 site occupied by molecule of componeAt .
where the summation ovan extends over the 4 nearest

s =1 0 emptysite neighbors NNK) of lattice sitek in thex-y plane. A slightly
—1 site occupied by molecule of componeBt more complicated expression obtains for the numbek-&f
(2.1)  (nearest-neighbdipairs, namely,
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12 In Eqg. (2.10, p={p1, ....p;} and m={m, ... ,m,} are
Nas(9)=—3 > > s+ s)| Serra(1—Se 1) sets of local order parameters, where
k=11=1
NN(K) ]
5 -1(1=S 1)+ Sm(1—s 1
-1(1=Se )+ 2 S m,.>} P Y .11

+Sk,l(1_Sk,l){Sk,l+l(1+sk,l+l)+sk,l1 _ _
is thetotal mean(local) density across the-y plane located

NN(K) atl. In Eq.(2.11) p{* andp? are the associategartial mean
X (148 _1)+ > Sm"(1+sm")H‘ (2.7 (loca) Qensit_ies of components and B, respectively. Thgy
m=1 are defined in units of® such that 6sp,<1. The “misci-

o ] ) bility” parameterm, defined through
Because of the infinite repulsion “felt” by fluid molecules at

vanishing distance from the substrate surface, we amend
Egs.(2.6) and(2.7) by the boundary conditions

1 n
= A— B:— )
Sko= Sk,z+l:O vk, (28) Mp=p; —p n |=21 Si| (212)

Based upon these expressions, we can cast the “Hamil-

tonian” of our binary lattice-gas mixture as is a quantitative measure of the degree of local decomposi-
_ tion of the binary mixture such that 1=m;<1. For ex-
H(S) = e[Naa(s)+ Nee(S) ]+ €asNas(S) + ewl Nawl(s) ample, if at pland the fluid consists of pure componeft
+Ngw(9) 1= [ Na(s) +Ng(9)]. (2.9 p|B=0, SO thatp|=p,A. Equation(2.12), thus, impliesm,
=1. Likewise, if at planel pure componenB is present,

In Eq. (2.9, e=eapn=€gg=0 is the depth of the attractive P|:P|B and hencan,=—1. If, on the other hand, we have

well of a square-well potential governing the interaction be-perfect miscibility across plané P|A:P|B [subject to Eq.
tween like fluid moleculegsymmetric mixtur¢. Similarly,  (2.11) and the constraing;<1] and hencen,=0. In other

epp<0 determines the attraction strength between unlikeyords, the phase behavior of the binary mixture is character-
fluid molecules. Since the width of the attractive well is ized by two sets oflocal order parameterS, name'p
taken to be equal to the lattice constdnin both cases, we =, . o} andm={m, ... m,}.

effectively restrict our model to nearest-neighbor interactions From a microscopic perspective the numberaopriori

only. Likewise, we assume for both species the same squargpssible configurations at fixetl, p, , andm, is given by the
well fluid-substrate potentidi.e., nonselective wallsvhere  combinatorial expression

the range of the attraction is again equalftand the inter-

action strength is represented lay,<0. Since we allow

each site to be occupied by one molecdespeciesA or B) Z (n\/n
at most, we implicitly account for the hard-core repulsion Qmnm=]] ( )( A)
between pairs of fluid molecules and between each fluid mol- =1 Am/An

ecule and the substrate. In EQ.9), u denotes thépartial z ni
chemical potential which we again consider to be the same =11 -
for both specie#\ andB. =1 =t n 1+m), _— 1+m,
1)+ | | |
2 2
B. Thermodynamics and mean-field approximation z nl
To simplify the subsequent treatment, we replace the =|H1 1m —m (2.13
Hamiltonian in Eq.(2.9) by its mean-field analog T (n—np!|n 5 ! !(n, 5 ')!
Hur(p,m)
z
€ where elements of the zdimensional vector n
=ny - 1+mm +p_1(T+mm,_ . .
{4 21 piLpr-al Mi+2)+ P11 im-1) ={n;, ... ,n,} correspond to the number of sites occupied
by molecules of either species in lattice pldnand, there-
€AB fore, nj=np,. The number of molecules of speciAsand B

z
2 €AB _
Fap(LEmp)]+ = Z‘l pilprea(l=mimy.y) across lattice planéis given byn*=n,(1+m,)/2, andnf

=n,—ni*=n,(1—m,)/2, respectively.
+pi—1(1—mm_y) +4p (1-mP)] Since we are concerned with the thermodynamic limit
both integers,n,— o, so that botlp, andm, are continuous
_ (2.10 on the interval 0,1] and[ —1,1], respectively. Hence, using
Stirling’s approximation, we may rewrite EQR.13 as

z

+ 6W(P1+PZ)_|21 P
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z nn
lim Q(n,m)zll—[ 1+m|)n|(l+m|)/2< )n|(lm|)/2- (2.14
[
2

- 1-m
n,{n}— (- n,)”‘”l( o |

Introducing the grand canonical ensemble partition function=0. Since in this limit entropic contributions vanish, the

Z in mean-field approximation grand-potential density is given by the expression displayed
_ in Eq. (A6) which has to be evaluated for all possible phases
=E=Qexp— BHyr), (215 (i.e., morphologiesP of the confined binary mixture which

we define the grand-potential density we shall identify promptly in Sec. Il A

1 1 Hyue A. The limit of vanishing temperature

——InE=—-—— +—F=o(T, , N . . .
,BNIn BNInQ N (T ’u)|’]' M To identify phases of confined binary mixturesTat0,

(2.16  we begin by realizing that in our model two energetically
distinct groups of lattice sites can be distinguished: “wall”
sites (subscriptw) |=1,z, where molecules of both species
are surrounded by five nearest neighbors and are subject to
do dpy  dw dm Jo the interaction with the substrate; “inner” sitésubscripti)
> — L Gt} B (2.17  2sI<z—1, where each molecule is surrounded by six near-
=1 \dpy dp  dmy du | du est neighbors but does not interact with either substrate. For
) o .. T=0, p;, andp,, are discrete and can independently assume
At therr_nodynam|c eqwhprl_umw assumes a global mini- ne values Oempty x-y plang and 1 (completely occupied
mum with respect to variations of thisets of local order .\ njang. If the latter is true the plane in question can be
parametersp and m. The necessary condition for its exis- occupied either by molecules of speciés(m;,,=1), B

tence may be stated a$ < const) (m;,=—1), or by an equimolar mixture of both compo-

w=—

where 8= 1/kgT (kg Boltzmann’s constanil temperaturg
At fixed T, we may, thus, write

z

dw_
du

Jo nents (m;,,=0).
— =0, (2.18a Following the modular approach introduced by Bock
Ipi et al.[33], the local order parameteps andm; at T=0 have
to have the same value for all sitepertaining to the same
f7_“’ -0 VI (2.180 energetically distinct group of lattice sites. Thus, from a con-
am, ' ' ceptual perspective it will prove sensible to define a ptrase
as the set
From Eq.(2.17 this implies
P={pw,Mupw,pi,Mipi}. (3.9
do Jow —
dn_op P (219 From the above considerations it then follows that 16 differ-

ent phases arm principle conceivable at most in the limit

where the far right side follows from EqAL) and p  1=0. They are summarized in Table |. _
=7z 1S% p, is the total mean density of the lattice gas. As_ _ Since we are dealing with the special case of a symmetrlc
shown in the Appendix, Eq$2.18) lead to Z coupled tran- binary mixture, several phasdfabeled by an asterisk in
scendental equations which may be cast compactly as Table ) may be neglected beforehand because they are en-
ergetically and structurally equivalent to one of the remain-

gi(p.M)=prs1+pi-1, (2.203  ing entries in that Table. For example, entries two and four
are equivalent since it does not matter whether “inner” sites
Oo(p1,M)=pre1Mis1tp_im_q, 1=1,...2 are occupied by molecules of speckesr B because the two

’(2’_200 are themselves indistinguishable. Similar logic prompts us to
conclude that only ten out of the original 16 phases need to
together with the boundary conditiopg=p,,1=0 [see Eq.  be considered explicitly, henceforth.
(2.8] imposed by the infinitely repulsive core of the sub-  |n principle, each phase® may coexist with another one
strates. The functiong, andg, are defined in EqQ¥A5) and  P#, say. Thus, 45 such pairs need to be considered explicitly.
(A4), respectively. Mathematically speaking?® and P# coexist at a chemical
potential . *? defined through the equation
IIl. NUMERICAL PROCEDURE
o (uP)=wf(u?), T=0, (3.2
To solve Egs(2.20, we resort to a numerical procedure
detailed below in Sec. Il B. It requires suitable starting so-where »® and »” are obtained from EqAB). If »® is the

lutions which we obtain by first considering the limit  global minimum of the grand-potential densiw;’ﬂz,u“[’
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TABLE |I. Lattice-gas phase® at T=0 [see Eq.(3.1)]. The  Suppose a solutiox, of Eg. (3.4) is already known for some

subscriptsw andi refer to sitesz=1z and 2<z<z-1, respec- T, andu,. We are then seeking a solutiarof Eq. (3.4) for
tively. For symmetric binary mixtures phases labeled by an asterisly given
are obsoletgsee text

T=Ty+ T, (3.53
P Pw MyPw Pi m;p;
1 0 0 0 0 m= ot Su. (3.5b
2* 0 0 1 -1
3 0 0 1 0 This new solution is obtained iteratively. Providéd and
4 0 0 1 1 ou are sufficiently small, a suitable iteration scheme can be
5* 1 -1 0 0 obtained by first expandin§(x) in a Taylor series around
6* 1 -1 1 -1 somey; truncated after the linear term, that is,
7* 1 -1 1 0
8* 1 -1 1 1 fO)=F(x) + V- £ ()[4, - (x=%;) + O(|x— x| ?) =0,
9 1 0 0 0 (3.6
10 1 0 1 -1
11 1 0 1 0 where  the  2-dimensional  vector V=(dldp,,
12 1 0 1 1 alomy, ... ,dldp,,9lom,)T. Equation(3.6) can be recast as
13 1 1 0 0
14 1 1 1 -1 Xiv1= = (V-F1(0)|xmy) "1 OG0+ X 3.7
15 1 1 1 0
16 1 1 1 1 Equation(3.7) is then iterated untilf(x;)|<10 'L One can

is the chemical potential at whicR® andP# are coexisting
phases in thermodynamic equilibrium with each other.

parameterp and m by solving Eqgs.(2.20 simultaneously.
However, for nonvanishing temperatures both local densitie
and mixing parameters are no longer discrete as before a

easily verify from the definition in Eq(3.4) that the matrix
V-fT has band structure and can therefore be inverted nu-
merically quite efficiently even iz becomes large; note that

in the limiting case of a bulk systeM - f' is represented by

B. Nonvanishing temperatures a 2X2 matrix on account of symmetry properties of the

) bulk.
For T>0, we need to determine the sets of order local 14 |ocate the chemical potential*? at which(metastable
or stablé phasesy and 3 (represented bx® andx?, respec-
ﬁ%/ely) coexist we expana in a Taylor series

T=0 but continuous on the interval®,1] and[ —1,1], re-

spectively. A solution of Egs(2.20 may then be achieved ¢ (u,x)= w(u; ,x)+d_w (= p)+0(— wi)?
numerically adopting an iterative scheme detailed below. du 1= gy X
Let us begin by reintroducing the set @bcal) order pa- _
rameters via the 2dimensional vector =w(wi,X)—pi(pw— i), (3.9
P1

Equations(2.20 can then be rewritten in vector notation as

which we truncate after the linear term. In Ea.8),E is the
m mean pore density defined in EQ.19.The chemical poten-
tial at coexistence is then estimated by solving

X= . (3.3

o(pn®x)=w(u xP), (3.9
Pz for u*?. From Eq.(3.8) and(3.9), we obtain an improved
m, estimate for the chemical potential at coexistence from

B By _ aB ya
o(ui” X0) — o(ui” X"
pify= +

ap 1
91(p1,M1) = p2—po M (3.10

92(p1,M1) — poMy— poMg

pl—pf

_ wherex®, x?, p®, andp? are obtained from the final solu-
f(x)= ) —o. tions of Eq.(3.7) for u;=u [see Eq.3.5b]. However, for
w®, x*, andx? no longer satisfy Eq(3.4). Hence, we
replace in Eq.(3.5b), wo by wi and du by Su= i1
91(Pz:M2) = Pz417~ P21 — i, solve Eq.(3.4) for x* andx?, and repeat the scheme
92(pz,M) = pyi1Myi1— Py 1M, 4 just described unti|su|<10"*. Finally, we return to Eq.
(3.4  (3.53 until the relevant temperature range has been covered.
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IV. RESULTS

A. Phase diagram of binary bulk mixtures

We begin the discussion with bulk mixtures for which we
display in Fig. 1 characteristic phase diagrams for selected
values ofe,g. Henceforth, all quantities are expressed in the
customary dimensionlesise., “reduced” units. That is, en-
ergies are given in units af, temperature in units dfe|/kg
(e<0). To realize a binary bulk mixture, we choogg,
=0, z=1 in Egs.(A3), (A4), and (A6), and replace the
hard-substrate boundary conditigns=p,. ;=0 by periodic
boundary conditiongo=p,. 1=p1 to account for the sym-
metry of the bulk mixture. EquatiofA6) is used in the limit
T=0 which serves to provide suitable starting solutions for
the iterative procedure detailed in Sec. Il B.

Results plotted in Fig. 1 for various values &fg illus-
trate generic types of phase diagrams defined as the union

px(T)=U g o P(T) (4.9
of coexistence Iinemf{B(T) between pairs of phases and

B. Bulk phase diagrams have also been discussed earlier by
Wilding et al.[35]. These authors studied the phase behavior
of a continuoussquare-well binary bulk mixture by means of
Monte Carlo simulations and a mean-field approach. For
exg=0.40 plots in Fig. 1a) show that for temperatureb
=<1.32 only gas and demixed liquid coexist along a line of
first-order phase transitions. This line ends at a tricritical
point located atu,=—1.75 andT,;=1.32. For tempera-
tures exceedind;, gas and demixed liquid coexist along
the so-called\ line [i.e., a line of critical points indicated by
the thin solid line in Fig. (a)]. This type of phase diagram
resembles the one shown by Wildiegal. in their Fig. Xc)

[35].

For highere,g=0.5 the phase diagram differs qualita-
tively from the previous one. This can be seen from Fip) 1
where a bifurcation appeatse., at a triple pointfor u,=
—2.25 andT,=1.075 at which a gas phase coexists simul-
taneously with both a mixed and a demixed fluid phase. Con-
sequently a critical point existsu=—2.25T.~=1.15) at
which the line of first-order transitions between mixed liquid
and gas states ends. The line of first-order transitions involv-
ing mixed and demixed liquid states ends at a higher tem-
perature and chemical potential @f,;=—2.00 and Ty;
=1.18 and thex line is shifted towards lower temperatures
as one can see from the plot in FigbL This type of phase
diagram comports with the one shown in Figb)lof Wild-
ing et al. [35].

A further slight increase oé,g to 0.56 does not cause the
phase diagram to changgualitatively but quantitatively
from the previously discussed case. This can be seen in Fig.
1(c), where for eag=0.56 the triple point is shifted to a

251
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G
0.6 0.8 1.0 12 14
T
-1.5
()
tricritical point
2.0 | D

triple point

critical point
G
0.6 0.8 1.0 12 14
T

G
0.6 0.8 1.0 12 14
T
-1.5
(@
201 D
M
critical
end point
25 °
/
G
0.6 0.8 1.0 12 14
T

lower temperature and chemical potential compared with £ 1 Bulk phase diagrams,(T) [see Eq(4.1)], whereG, M,
€as=0.50. Likewise, the line of first-order transitions be- and D refer to one-phase regions of gaseous, mixed liquid, and
tween gas and mixed liquid appears at lower chemical podemixed liquid phases, respectively. Pairs of neighboring phases
tential but is somewhat longer since the critical point is el-coexist for state points represented by solid lines where thick and
evated to a higheff=1.18. The opposite is true for the thin lines refer to first-order and second-order phase transitions,
coexistence between mixed and demixed liquid phases asspectively(a) exg=0.40, (b) exg=0.50, (C) €xg=0.56, (d) €ap

one can see from Figs(l) and Xc).
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Eventually, ase,g becomes sufficiently large, first-order
transitions between mixed and demixed liquid phases disap-
pear as the plot in Fig.(d) shows. Fore=0.70 the\ line
intersects a line of first-order phase transitions at a critical
end pointucgp= —2.55, Tcgp=0.84 since the nature of the
participating phases along theline differs from those in-
volved in the first-order transitions fof <Tggp Or T
>Tcep. This type of phase diagram resembles the one plot-
ted in Fig. 1a) in the paper of Wildinget al. [35].

In the limit eag=1.0 the symmetric binary mixture de-
generates to a pure fluid. In this caBg-p— 0 and thex line
becomes formally indistinguishable from the axis (and
therefore physically meaninglgssThe remaining coexist-
ence lineuSt=—3=u, (i.e., the phase diagrannvolving
gas(G) and liquid phasesglL) becomes parallel with th&
axis and ends at the critical point whefg=3 (u.=—3) as
expected for the bulk lattice g486] (see, for example, Fig.

9 in Ref.[37]).

B. Phase behavior of confined binary mixtures

If a fluid is confined to spaces of molecular dimengsn
one expects their phase behavior to be altered from that of
their bulk counterpart in several significant ways. For ex- P R :

ample, as far as pure fluids are concerned experinjéis bulk 15 1o 8 6 4
and theoretical approachd82] have repeatedly demon- 17z

strated that the gas-liquid critical point is shifted to lower 1.00

critical temperatures and highéaverage densities of the

confined fluid. The effect is more pronounced the more se- Teep

verely confined the fluid igi.e., the smaller the pore width
is).

In a confined binary mixture a similar confinement-
induced shift of the critical point is observed. This is appar-
ent from plots in Fig. 2 where the critical point involving gas
and mixed liquid phase is shifted to progressively lower

0.98

and u with decreasing pore width For the present value of 0.96

exp= 0.6 the phase diagram of the confined fluid corresponds L , ,
to type lll [see Fig. 2a)] illustrated by the plot of the bulk bulk 15 12 10 3 6
analog shown in Fig. ). Another confinement effect, that 1z

does not have any counterpart in pure fluids, can also be seen _ ) ]
from Fig. 2. It concerns a downward shift of the tricritical  FIG- 2. (&) As Fig. 1, but for various degrees of confinement

point { Ty, i} With increasing degree of confinemeiie., (i.e., z) indicated in the figure where) denote the tricritical and
asz becomes smallgr (@) the critical point, respectivelye,g=0.6.eyy=1.0); (b) critical

For a given substrate separatianand e z=0.6 the temperaturel ;. versus inverse pore width for various valuesegf

strength of the fluid-substrate interactief, also has pro- L:?;C?md In the figureic) as(b), but for critical-end-point tempera-
found consequences for bolh and Tegp as plots in Fig. 2 CEP:
show. From Fig. i), it is obvious that increasing, causes in Fig. 2c)]. However, for largere,y=1.0, Tcgp increases
a depression of ; for a given value ot The effect increases yith the strength of the fluid-substrate attraction. Both trends
with decreasing width of the slit pore. The depressioffof can be understood in terms of a competition between en-
can be understood in terms of enhanced gas adsorption at thepic versus energetic effects as we shall discuss below in
substrate surfaces with increasiag. Thus, for a givenT ~ Sec. V. The increase dfcgp with €, reflects enhanced de-
the mean densities of coexisting gas and mixed liquid phasesomposition of the confined fluid since a higigyep reduces
are less different the larges, becomes. Consequently,, the size of the one-phase region of mixed fluid phases rela-
at which the two become identical by definition, decreasesive to the one-phase region of demixed states. However,
with increasing fluid-substrate attractidmwhile holding z ~ compared with the confinement-induced shiftTofthe im-
constank pact of varyingeyy, is quite small forT ogp. It is furthermore

A similar confinement effect is observed for the critical- gratifying that the confinement-induced depressioit o&nd
end-point temperature in Fig(@. Like T, Tcgp first de-  Tcgp diminishes rather quickly ag—c« so that a smooth
creases withe,, for each giverz [see curves foey,=0.7, 1.0  extrapolation of our results to the bulk limit is achieved.
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If, on the other hand, a smalle,g=0.4 is concerned, a
thermodynamically stable mixed liquid phase is absent and
we are dealing with a phase diagram of tygede Fig. 13)].

If the fluid-substrate interaction is weakly attractiye,
=0.1, see Fig. @], agaseouphase coexists with a dense
demixedliquid phase up to the tricritical point where the two
become indistinguishable. G

However, for a larger fluid-substrate attractieg=1.15
the plot in Fig. 3b) exhibits a bifurcation at the triple point
My=—2.47, T,=0.87. ForT<T, gas coexists with a de- . . .
mixed film of finite thickness adsorbed on either substrate, 0.6 08 10 12 14
whereas forT>T, gas still coexists with demixed fluid T
along the respective coexistence line&°"(T) and uS°(T)
in Fig. 3(b). The demixed film eventually undergoes capil-
lary condensation to a demixed fluid > w2 °(T) along
an isothermT <T,,. Thus, as shown in Fig.(B) the demixed
wetting film is thermodynamically stable over a narrow
range of chemical potentials.

If ey increases further to a value of 1.8ee Fig. &)],
say, the triple point of gas, demixed film, and demixed fluid
disappears. Instead a second tricritical point appeays,at
=—2.52,T4=0.91 involving gas and demixed film. At this
triple point a\ line appears which intersects the coexistence
line between demixed fluid and theow indistinguishable
gas and demixed film at the critical end poipicgp=
—2.30, Tegp=1.02. ForT>Tgpgas and demixed fluid co-
exist for thermodynamic states represented by the thick solid
line in Fig. 3c). These latter phases become indistinguish-
able at the tricritical poinfu;=—1.92, T,;=1.26 where a
second\ line begins.

For even largee= 3.0 the plot in Fig. &) indicates that

4t

the critical end point has disappeared. The coexistence line G

between gas and demixed film is shifted to lower chemical

potentials ending at a tricritical point wherehaline starts 4T

that does no longer intersect the line of first-order transitions

between a demixed film and the demixed fluid. This line now 06 08 o 12 L4
ends at a true critical point.=—2.00, T,=1.23 where the T

latter two become indistinguishable. To verify that the the

point u.~—2.00, T,=1.23 is a legitimate critical point we " ' @

numerically analyzed the order paramepét—p°F which 2F D
follows a scaling law (+T/T)# asT—T, . As expected /

our analysis gives the mean-field valge= 3 for the critical

exponent. 3l

C. Confinement-controlled decomposition of binary mixtures DF

In the preceding Sec. IV B system parameters were cho- 4 G

sen such that the type of the phase diagram remained unal-
tered upon a variation of one or more of these parameters. 06 08 o 2 4
However, by varying the degree of confinemérg., z) it is T

also possible to switch between various types of phase dia-

grams with profound consequences for liquid-liquid and gas- FIG. 3. As Fig. 1 but for various strengths of fluid-substrate
liquid phase equilibria which may have practical implica- attraction,exg=0.4, andz=10. (a) €,=0.10, (b) ey=1.15, ()
tions for the decomposition of mixtures of immiscible €w=1.30, (d) ew=3.00.

liquids.

Consider as an example the casg=0.5 for which the gram bifurcates into a line of first-order phase transitions
bulk phase diagram is plotted in Fig.ad. It consists of aline  between gaseous and mixed liquid states ending at the criti-
of first-order phase transitions involving gaseous and deeal pointu.~=—2.25,T,=1.13 and a line of first-order tran-
mixed liquid states fol<1.08. AtT,=1.08 the phase dia- sitions involving mixed and demixed liquid states. The latter
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2.1 - - - @ gered by confinement upon condensation. Thus, by choosing
i an appropriate pore width one can either promote condensa-
S / ] tion of a gas to a mixed liquid phase or, alternatively, initiate
A liquid-liquid phase separation in the porous m.atnx where
bulk_—] % both processes are solely confinement drlven since thg pore
23 4—-«/ -2.24 1 walls are nonselective for molecules of either species in our
296 * present model.
- o o2s This process is furth_er illustrated by the plots in Fig)4
240 ' where the mean densigy of thermodynamically stable con-
1.08 1.09 1.10 . . . .
o5 " 1 oo fined phases is plotted as a function of(i.e., the pore

width). Three different branches are discernible. For small

z<8, ;is relatively high indicating that the pore is filled
) with liquid. A corresponding plot of the local densities of a
representative phase fa=5 shows that this liquid consists

1.0 |
_/w |W| 1 locally of A- (or B-)rich, high-density fluid(since the two

038 | cannot be distinguished in a symmetric mixjurdence, for
I \./| z<8 we observelocal) decomposition of liquid mixtures.

o

06 - Wﬂ%@iﬂum Along an_in_termediate branch of pore widths, _that is, for 8
<z<16, p is somewhat smaller than for the tightest pores
(z<8). An inspection of a prototypical plot of the local den-
sities forz=12 reveals that the confined phase now consists
eI of a locally equimolar mixture. Hence, for intermediate pore
S 10 15 20 25 30 35 40 45 50 sizes the confined phase is a mixed liquid. Finally, for

z >16, ;is still smaller than along the two previously dis-
FIG. 4. (a) As Fig. 1, where the inset is an enhanced replresencussed branches. The local density of a representative state

tation of that part of the phase diagrams bounded by the box with {07 Z=20 now clearly shows that a comparatively low-
fixed thermodynamic state represented byb). Mean pore density density fluid exists at the center of the pore. As either sub-
1 as a function of pore widtla where stability limits between pairs Strate 1S approached the density increases indicating that this
of phases are demarcated by vertical lines; also shown are histgliXture wets the substrates. However, as expected for such a

grams of the local densny of representatlve phases where the shad@S” state the fluid is composed locally of an equimolar
ing of the bars refers tpf andp?, respectively. mixture similar to states along the intermediate branch 8
<z<16. The change op between a pair of branches is
discontinuous at characteristic pore widths where the first-
ﬁrder transitions occur between these phases.

04

' D M G

0.2

ends at the tricritical pointuy;=—2.04 and T;;=1.16.
Hence, for the present choice of model parameters the bul
phase diagram is of type [bee Figs. (b) and Xc)]. If this
binary mixture is now confined to a relatively wide slit pore,
the phase diagram remains of type Il but the plot referring to  In this work, we investigate the phase behavior of a sym-
z=12 in Fig. 4a clearly shows the confinement-induced metric binary mixture confined to slit pores with chemically
downward shift of coexistence lines and the displacement oiomogeneous, planar substrate surfaces. The substrates are
characteristidi.e., triple, critical, and tricritical points dis-  nonselective, that is, the strength of the fluid-substrate inter-
cussed in the preceding section. However, if the degree dction for molecules of compone#tis identical to that for
confinement becomes more sevfsee plot forz=6 in Fig.  molecules of componer. The dimensionality of configu-
4(a)] the character of the phase diagram changes from type Hation space is reduced by restricting positions of fluid mol-
to | according to the classification scheme developed on thecules to sites on a simple-cubic lattice. Moreover, the inter-
basis of Figs. (b) and 1a), respectively. In other words, by action between fluid molecules and between a fluid molecule
going from z=12 to z=6 the mixed liquid vanishes as a and the substrates is governed by square-well potentials
thermodynamically stable phase, while the entire phase diawhere the widths of the attractive wells is chosen such that
gram is further shifted to lower chemical potentials. Thisonly nearest-neighbor interactions are accounted for.
latter trend persists if the pore width is reduced even more In addition to discretization, we employ a mean-field ap-
with no further change in the type of phase diagram. proximation to the Hamiltonian governing our lattice-gas

If one then fixes the thermodynamic state such that thenodel which is expected to be sufficiently realistic for our
bulk mixture is a gagrepresented by in the inset in Fig. present purposel84]. When it comes to fluidi.e., gas or
4(a)], confinement to a relatively wide potee.,z=12) may liquid) phases, discretization of configuration space might
first cause capillary condensation to a mixed liquid mixtureseem somewhat problematic at first sight. However, lattice
analogous to ordinary capillary condensation in pure fluidsmodels have been employed frequently to investigate generic
If the fluid is confined to a narrower poreg£6), however, features of fluid phases in the past even if much more com-
decomposition intoA-rich and B-rich liquid phases is trig- plex polymeric systems are considerg#,39,4Q. Perhaps

V. SUMMARY AND CONCLUSIONS
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the greatest advantage of mean-field lattice-gas models sary mixtures of simple fluids are concerned.
that they permit to calculate entire phase diagrams with com- In the context of confined binary mixtures, we focus on a
parably little computational effort even for rather complex variation of both the degree of confineméing., the width of
model system$33,41]. This aspect is particularly important the slit porez) and the “wettability” of the substrate€.e.,
in the context of this work where the parameter space, otthe strength of the fluid-substrate interactigp) disregard-
which our model is defined, is rather highly dimensional. ing deliberately a detailed discussion of wetting phenomena
To reduce the dimensionality of the parameter space weo which we shall turn our attention in a separate publication
restrict this study to symmetric binary mixtures characterized42]. Generally speaking, confinement causes a depression of
by ean=€pg, thus permitting only the cross interaction be- both critical and critical-end-point temperatures provigdgd
tween molecules of speci#sandB to vary in order to pro- s large enough for the latter to existee Fig. 8)]. In this
mote either mixing é,g>1) or decomposition €xg<<1).  case varyingey, for fixed pore widthz causes an additional
Moreover, we fixu,= ug to reduce the number of relevant depression ofT, [see Fig. 20)]; the opposite but much
model parameters even further. smaller trend is observed foFcgp with increasingey, at
Based upon a modular approach introduced by Beick.  fixed z [see Fig. 2c)]. Both effects seem plausible if one
[33], we can then determine the complete set of phéises  realizes that the mean density of the gas phase in coexistence
occupation-number pattennef the binary mixture af=0. with a mixed liquid phase increases on account of more pro-
These phases serve as suitable starting solutions for the naeunced adsorption of the gas at the substrate for lasger
merical minimization of the grand potential fér>0, which  In other words, the larges,, the lower the temperatufg, at
eventually permits us to determine complete phase diagramghich gas and mixed liquid phase become indistinguishable.
of bulk and confined binary mixtures over the entire tem-Likewise, at the critical end point, mixed and demixed liquid
perature rangésee Sec. Il phases are indistinguishable from gaseous phases of a den-
By varying e5g, we determine essentially three different sity increasing withe,y. Since the pore wall is nonselective
generic types of bulk phase diagrams. In mixtures pertainingor either component and because of our present choice of
to type I, (mixed) gas and demixed liquid mixtures coexist e,5=0.6, which promotes decomposition, it seems obvious
along a line of first-order phase transitions up to the tricriti-that the stronger the substrate attracts fluid molecules the
cal point at which the transition between these two phasekirger is the tendency of the confined mixture to decompose
becomes second order for @l=Ty; (i.e., along the so-called as reflected by a somewhat larggy; . This is because once
A\ line). A mixed liquid does not occur as a thermodynami-a molecule of either component is adsorbed by the pore wall
cally stable phase due to the relatively low valueepls it is energetically more favorable to surround it by other like
characteristic of mixtures of type[see Fig. 1a)]. molecules. Entropically, the opposite would be true which
For intermediate values ofag the phase diagram is of means that for the present choice of parameters properties of
type 1l where now a mixed liquid arises as a third thermo-the confined phase are controlled by energetic rather than
dynamically stable phase. In mixtures of type Il, this mixedentropic effects. This is no longer sodf,=0.7 whereT cgp
liguid may coexist with either demixed liquid or gas phasesfor a given value ot is intermediate to the curves pertaining
independently. Thus, besides a tricritical point involving nowto e,,= 1.0 ande,,= 1.3 and in Fig. &). In this case, attrac-
mixed and demixed liquid phases, a critical point exists ation by the walls is too weak and the entropic effects “win”
which gaseous and mixed liquid phases become indistinever the energetic ones so that the walls now favor mixing of
guishable/see Fig. 1b)]. the two components rather than decomposition. However, the
Athird type of phase diagrams exists for sufficiently largeeffects are rather small as a comparison of Figis) @nd 2c)
values ofeng. Phase diagrams of type Ill are characterizedshows.
by the existence of gaseous, mixed, and demixed liquids as Another, more significant finding concerns strong fluid-
thermodynamically stable phases. However, lines of firstsubstrate attraction and is illustrated by the plot in Figl) 3
order phase transitions exist only between gas and demixeghere«2"°(T) ends at a true critical point. This is remark-
liquid on one hand and gas and mixed liquid on the otheiple because théamean density of the demixed filn{DF)
hand; the transition between mixed and demixed liquidadsorbed on the substrates is relatively low so that ordinarily
phases is always second order along khdine [see Fig. one would anticipate a thermodynamically stable mixed
1(d)]. The\ line now terminates at a critical end point where phase. This phenomenon, to the best of our knowledge, has
it meets the lines of first-order transitior)ﬁffD(T) and  not been reported previously.
MSM(T). Perhaps the most significant finding of the present work
The three types of phase diagrams for symmetric binargoncerns confinement-induced changes in the type of phase
bulk mixtures comport qualitatively with the general classi-diagram describing the confined fluid mixture. As illustrated
fication scheme proposed earlier by Wildiegal. for a re-  in Fig. 4 by varyingz for fixed and suitably chosen values of
lated mode[35]. Since these authors employed a continuousspg and ey it is not only possible to shift all coexistence
model, quantitative differences between their and our phasknes to loweru but also to switch from a phase diagram of
diagrams are inevitable. More important, however, is thetype Il to one of type I, that is to eliminate mixed liquids as
qualitative agreement between the results obtained by Wildthermodynamically stable phasege Fig. 4. This may have
ing etal. and us, since it allows us to conclude that theimportant repercussions for the decomposition of binary
general features of phase diagrams of type I-Ill are indeedhixtures in sorption experiments where one may envision
generic, that is, model-independent, as far as symmetric bpore condensation in nanoscopic solid matrices leading ei-

026122-10



PHASE BEHAVIOR OF CONFINED SYMMETRIC BINARY . .. PHYSICAL REVIEW B7, 026122 (2003

ther to a mixed or demixed liquid phase depending solely on ¢+ ¢,p €pp— €
the pore width. Pre1—  MMiapi 5 —
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. EABT
APPENDIX A: DERIVATION OF EQS. (2.18 + > My (p_ 1M1+ 4p M) + en( Sy + 8,).  (A3)
An explicit expression fow is obtained by inserting Eqgs.
(2.10 and(2.14) into Eg.(2.16 which yields Likewise, we may rewrite EqA2a) as
1 z " 1 1+ m| 4
m _my_q= m
w(T,M)=—E|1{—P| Inp—(1—=p)In(1l—-p)+pIn2 R EAB) M, ~ 1M
=0a2(pr,my). (Ad)

Pi
B 5{(1+m,)In(1+m|)+(1—m,)ln(1—m|)} Inserting now Eq(A4) into Eq.(A3), we eventually obtain

1 _
EE { {prea(T+mmy 1) +p g Plortpl_1= 2m 2 " _ﬂ|n1+m|
) TP et ens Bleteap)| 1—p 2 1—m

X (1+mm_q)+4p(1+mP)}

+ %{(H mp)In(1+m)+(1—m)In(1—m)}

€AB
e (I=mim )+ g (1-mimy )

2€W
—4p— (61 + 6,)=01(p;,m). (A5)
€+ €pp

1 z Ew
+4 1—m%}—— +—(p1+p,)-
pil ok z 21 PIET (P2t pz Note that bothp, and m, are continuous on the intervals
(A1) [0,1] and[ —1,1], respectively.
In the limit of vanishing temperature (@#0), on the
other hand, entropic contributions te vanish and one has

Employing Eq.(Al) in Eq. (2.18 a set of Z coupled tran-
ploying Eq.(A1) q.(2.18 p from Eq. (A1)

scendental equations, namely,

12 €
1 1+m e—€pp w(O,M)Izglm Z{P|+1(1+m|m|+1)

Ozﬁlnl m % (Pr+aMiat piaMi—g +4pmy),
(A23) +pi-1(1+mm_p)+4p (1+m)}
— pr 1 +E{P| (I=mmy;q) +pj—y(I—mm_)
i=u+tptn2=p1 nt 2 PI+1 +1 -1 -1
z
+a4p(1-m?)}|— = — +o)l,
+(L=m)IN(L—m)} |+ — "2 (py 1+ pi- 1+ 4py) Al i z Elphu ew(pitpo)
(AB)
€~ €EpB
o M(p My - aM— g+ 4pm) where the mean density =0, p,=0,1 is a double-valued
discrete quantity since a given plahean only be occupied
+ ew( Syt 8z1), (A2b)  or empty. Forp;=0, m=0 is the only sensible possibility.

If, on the other handp;=1, m=0,=1 is triple-valued de-
is obtained after somewhat lengthy but straightforward algepending on whether this part|cular site is occupied by an
bra whereg;; denotes the Kronecker symbol. We can solveequimolar mixed liquid §,=0), pure componenf (m,
Egs.(A2) by first reorganizing Eq(A2b) such that =1), or pure componer (m=—1).
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