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Phase behavior of confined symmetric binary mixtures
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We employ mean-field lattice density functional theory to investigate the phase behavior of a binary (A-B)
mixture confined to nanoscopic slit pores with chemically homogeneous walls. We consider only nearest-
neighbor interactions in symmetric mixtures, whereeAA5eBBÞeAB ande is a measure of attraction between
molecules of like~subscriptsAA andBB) and unlike species~subscriptAB), respectively. In addition, mol-
ecules are exposed to short-range attraction by the substrates separated byz lattice planes whereeW is the
relevant coupling parameter. Moreover, the chemical potentials of both components are the same, that is,mA

5mB5m. In thermodynamic equilibrium~for fixed temperatureT and chemical potentialm) the grand-
potential densityv@r,m# (r[$r1 , . . . ,rz%, m[$m1 , . . . ,mz%) assumes a global minimum which we find by
minimizing v numerically with respect to the order parametersr l[r l

A1r l
B ~total local density! and ml

[(r l
A2r l

B)/r l ~local ‘‘miscibility’’ ! at lattice planel parallel to the pore walls. By varyingeAB three generic
types of bulk phase diagrams are observed. On account of confinement~i.e., by varyingeW as well asz) one
may switch between these different types of phase diagrams. This may have profound practical repercussions
for experimental nanophase separation since depending on pore width and chemical nature of its walls a bulk
gas mixture may undergo capillary condensation and form either a stable mixed or demixed liquid phase.

DOI: 10.1103/PhysRevE.67.026122 PACS number~s!: 05.70.Np, 61.46.1w, 68.55.Nq, 68.55.2a
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I. INTRODUCTION

The phase behavior of pure fluids and their mixtures
confined geometries is currently receiving a lot of expe
mental and theoretical attention~for a recent review see Re
@1#!. Experimentally one is usually concerned with confini
solid matrices of either low porosity like porous glass
@2–8# or high porosity like silica gels@9–12#. These systems
are studied by a variety of techniques including light or ne
tron scattering@5,6,9–11#, measurements of nonlinear diele
tric phenomena@4#, and of the heat capacity@2#. Typical pore
widths range from 1 to 100 nm.

Theoretically, a variety of model binary mixtures has be
investigated within the framework of different technique
Most of these works are concerned with so-called symme
mixtures characterized by identical interactions between
molecules of both species. Several theoretical studies fo
on domain growth during phase separation in confined
ometry@13–20# which is described by a power law in thre
dimensional systems@19#. By means of computer simula
tions associating fluid mixtures are investigated w
particular emphasis on the formation of hydrogen bon
@17#. Within the framework of Monte Carlo simulations i
the grand canonical ensemble~GCEMC!, Gózdzet al. deter-
mined aspects of the phase diagram of a binary mixture
slit pores that are in thermodynamic equilibrium with a d
mixed bulk mixture@21#. Also by means of GCEMC, Cush
man and Curry studied binary mixtures of ‘‘simple’’ fluid
confined between nanoscopically corrugated substrate
faces @22,23#. In their system the substrates are decora
with rectilinear grooves promoting~partial! solidification of
the confined mixture. Grabowskiet al. employed Monte
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Carlo simulations to investigate wetting of solid surfaces
binary-mixture films@24#. In GCEMC simulations by Kierlik
et al. @25#, the impact of independently varying the chemic
potentialsmA and mB of both components is investigated
These authors observe that mere confinement by nons
tive substrates causes selective adsorption of the dilute c
ponent.

Besides computer simulations density functional calcu
tions @25,26# and integral–equation approaches@27,28# have
also been employed to investigate properties of confined
nary mixtures. Pizioet al. @26# are concerned with the effec
of polydispersity in hard-sphere mixtures, whereas Trokhy
chuk et al. @27# focus on chemical reactions. In both cas
the mixture is confined to nanoscopic slits. On the contra
Schöll-Paschinger and co-workers consider a random por
matrix formed by immobile hard spheres of a given numb
density@28# which serves as a suitable model for experime
tal situations where the confining matrix is a porous gla
Another powerful theoretical tool are self-consistent fie
calculations@29# which have been used by Binderet al. @30#
to study symmetric binary polymer blends in confinemen

Unlike these previous works, we are concerned here w
a systematic study of the phase behavior of binary mixtu
composed of simple fluids confined to ordered nanopor
matrices. Examples of such materials are MCM-41
SBA-15 silicas that can relatively routinely be synthesiz
@31# and in which sorption isotherms can be measured r
tively easily@32#. To determine the phase behavior of bina
mixtures in such nanoscopic pores theoretically we exten
previous study by Bocket al., who were concerned with pur
fluids, to the case of symmetric binary mixtures@33#. In Ref.
@33#, lattice density functional theory is employed to inve
tigate the interplay between surface-induced a
confinement-induced phase transitions in slit pores w
chemically patterned substrates. In addition to discretiza
of configuration space, Bocket al. treat the~intrinsic! free-
©2003 The American Physical Society22-1
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energy functional at mean-field level@33# which is believed
to be sufficiently realistic as far as first-order phase tran
tions are concerned@34#.

In this work, we focus exclusively on the impact of th
degree of confinement~i.e., the pore width! and the strength
of the fluid-substrate attraction on the phase behavior of c
fined binary mixtures of speciesA and B, say. Like most
previous workers, we restrict ourselves to symmetric m
tures characterized by an equally strong attraction betw
like molecules of either species. Moreover, we focus exc
sively on the casemA5mB . Thus, mixture properties com
about only by varying the attraction strength between un
molecules. For such somewhat simplistic mixtures Wildi
et al. determined the bulk phase behavior@35#. While also
using a mean-field approach, Wildinget al. are concerned
with an off-lattice model@35#. Depending on characteristi
ranges of theA-B attraction strength they find three di
tinctly different generic types of phase diagrams~see Fig. 1
in Ref. @35#!. We will show here that the same generic typ
of bulk phase diagrams are observed in lattice models,
Moreover, we shall demonstrate that on account of mere c
finement it is possible to switch from one type of these ph
diagrams to another which may have profound conseque
for liquid-liquid nanophase separation in ordered porous m
trices.

The remainder of this paper is organized as follows.
Sec. II, we outline the theoretical framework where, in p
ticular, we introduce the lattice-gas model in Sec. II A a
develop its mean-field treatment in Sec. II B. The solution
our model proceeds numerically. We outline the numeri
procedure in Sec. III. Its key ingredient are analytical so
tions at vanishing temperature which we discuss in S
III A, whereas Sec. III B is devoted to the more general c
of solutions for nonvanishing temperatures. Results are s
marized in Sec. IV, where we begin in Sec. IV A with a bri
discussion of bulk phase diagrams. Sections IV B and IV
are given, respectively, to analyses of confinement effe
and confinement-controlled decomposition of binary m
tures. In Sec. V, we summarize our key findings.

II. THEORY

A. Lattice model

Consider a binary (A-B) fluid mixture confined to a slit
pore whose substrate surfaces are planar and chemically
mogeneous. To simplify the treatment, we discretize sp
such that positions of molecules are restricted to theN5nz
sites of a simple-cubic lattice, whose lattice constant is,.
The position of a fluid molecule on the lattice may then
specified by a pair of integers (k,l ), where 1<k<n labels
the position in thex-y plane and 1< l<z determines the
position of this plane relative to the substrate surfaces.
cordingly, we introduce then3z matrix s of occupation
numbers whose elements are given by

sk,l5H 11 site occupied by molecule of componentA

0 empty site

21 site occupied by molecule of componentB.
~2.1!
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From Eq.~2.1! it is straightforward to work out expres
sions for the total number of sitesNA(s) andNB(s) occupied
by molecules of speciesA andB, respectively. One obtains

NA~s!5
1

2 (
k51

n

(
l 51

z

~sk,l11!sk,l5
1

2 (
k51

n

(
l 51

z

~sk,l
2 1sk,l !,

~2.2a!

NB~s!5
1

2 (
k51

n

(
l 51

z

~sk,l21!sk,l5
1

2 (
k51

n

(
l 51

z

~sk,l
2 2sk,l !,

~2.2b!

such that

N~s!5NA~s!1NB~s!5 (
k51

n

(
l 51

z

sk,l
2 ~2.3!

is the total number ofoccupiedsites in a given configuration
s ~i.e., for a given occupation–number pattern!.

Moreover, it is straightforward to verify that the tota
number of molecules of speciesA at either substrate is give
by

NAW~s!5
1

2 (
k51

n

@~11sk,1!sk,11~11sk,z!sk,z#, ~2.4!

which follows from considerations similar to the ones lea
ing to Eq. ~2.2a!. Thus, the total number of molecules o
speciesB at the substrate is given by

NBW~s!52
1

2 (
k51

n

@~12sk,1!sk,11~12sk,z!sk,z#.

~2.5!

Similarly, one can work out expressions for the numb
NAA (NBB) of A-A (B-B) pairs, that is, directly connecte
sites both of which are occupied by a molecule of specieA
(B). These somewhat more involved expressions are gi
by

NAA~s!5
1

8 (
k51

n

(
l 51

z

sk,l~11sk,l !Fsk,l 11~11sk,l 11!

1sk,l 21~11sk,l 21!1 (
m51

NN(k)

sm,l~11sm,l !G ,

~2.6a!

NBB~s!5
1

8 (
k51

n

(
l 51

z

sk,l~12sk,l !Fsk,l 11~12sk,l 11!

1sk,l 21~12sk,l 21!1 (
m51

NN(k)

sm,l~12sm,l !G ,

~2.6b!

where the summation overm extends over the 4 neare
neighbors NN(k) of lattice sitek in thex-y plane. A slightly
more complicated expression obtains for the number ofA-B
~nearest-neighbor! pairs, namely,
2-2
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NAB~s!52
1

8 (
k51

n

(
l 51

z H sk,l~11sk,l !Fsk,l 11~12sk,l 11!

1sk,l 21~12sk,l 21!1 (
m51

NN(k)

sm,l~12sm,l !G
1sk,l~12sk,l !Fsk,l 11~11sk,l 11!1sk,l 21

3~11sk,l 21!1 (
m51

NN(k)

sm,l~11sm,l !G J . ~2.7!

Because of the infinite repulsion ‘‘felt’’ by fluid molecules a
vanishing distance from the substrate surface, we am
Eqs.~2.6! and ~2.7! by the boundary conditions

sk,05sk,z1150 ;k. ~2.8!

Based upon these expressions, we can cast the ‘‘Ha
tonian’’ of our binary lattice-gas mixture as

H~s!5e@NAA~s!1NBB~s!#1eABNAB~s!1eW@NAW~s!

1NBW~s!#2m@NA~s!1NB~s!#. ~2.9!

In Eq. ~2.9!, e5eAA5eBB<0 is the depth of the attractiv
well of a square-well potential governing the interaction b
tween like fluid molecules~symmetric mixture!. Similarly,
eAB<0 determines the attraction strength between un
fluid molecules. Since the width of the attractive well
taken to be equal to the lattice constant, in both cases, we
effectively restrict our model to nearest-neighbor interactio
only. Likewise, we assume for both species the same squ
well fluid-substrate potential~i.e., nonselective walls! where
the range of the attraction is again equal to, and the inter-
action strength is represented byeW<0. Since we allow
each site to be occupied by one molecule~of speciesA or B)
at most, we implicitly account for the hard-core repulsi
between pairs of fluid molecules and between each fluid m
ecule and the substrate. In Eq.~2.9!, m denotes the~partial!
chemical potential which we again consider to be the sa
for both speciesA andB.

B. Thermodynamics and mean-field approximation

To simplify the subsequent treatment, we replace
Hamiltonian in Eq.~2.9! by its mean-field analog

HMF~r,m!

5nH e

4 (
l 51

z

r l@r l 11~11mlml 11!1r l 21~11mlml 21!

14r l~11ml
2!#1

eAB

4 (
l 51

z

r l@r l 11~12mlml 11!

1r l 21~12mlml 21!14r l~12ml
2!#

1eW~r11rz!2(
l 51

z

r lmJ . ~2.10!
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In Eq. ~2.10!, r[$r1 , . . . ,rz% and m[$m1 , . . . ,mz% are
sets of local order parameters, where

r l[r l
A1r l

B5
1

n (
m51

n

sm,l
2 ~2.11!

is thetotal mean~local! density across thex-y plane located
at l. In Eq. ~2.11! r l

A andr l
B are the associatedpartial mean

~local! densities of componentsA andB, respectively. They
are defined in units of,3 such that 0<r l<1. The ‘‘misci-
bility’’ parameterml defined through

mlr l[r l
A2r l

B5
1

n (
i 51

n

si ,l ~2.12!

is a quantitative measure of the degree of local decomp
tion of the binary mixture such that21<ml<1. For ex-
ample, if at planel the fluid consists of pure componentA,
r l

B50, so thatr l5r l
A . Equation ~2.12!, thus, impliesml

51. Likewise, if at planel pure componentB is present,
r l5r l

B and henceml521. If, on the other hand, we hav
perfect miscibility across planel, r l

A5r l
B @subject to Eq.

~2.11! and the constraintr l<1] and henceml50. In other
words, the phase behavior of the binary mixture is charac
ized by two sets oflocal order parameters, namely,r
[$r1 , . . . ,rz% andm[$m1 , . . . ,mz%.

From a microscopic perspective the number ofa priori
possible configurations at fixedN, r l , andml is given by the
combinatorial expression

V~n,m!5)
l 51

z S n

nl
D S nl

nl
AD

5)
l 51

z
n!

~n2nl !! S nl

11ml

2 D ! S nl2nl

11ml

2 D !

5)
l 51

z
n!

~n2nl !! S nl

11ml

2 D ! S nl

12ml

2 D !

, ~2.13!

where elements of the z-dimensional vector n
[$n1 , . . . ,nz% correspond to the number of sites occupi
by molecules of either species in lattice planel and, there-
fore, nl5nr l . The number of molecules of speciesA andB
across lattice planel is given bynl

A5nl(11ml)/2, andnl
B

5nl2nl
A5nl(12ml)/2, respectively.

Since we are concerned with the thermodynamic lim
both integersn,nl→`, so that bothr l andml are continuous
on the interval@0,1# and@21,1#, respectively. Hence, using
Stirling’s approximation, we may rewrite Eq.~2.13! as
2-3
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n,$nl %→` l 51
~n2nl !

n2nlS nl

11ml

2 D l l S nl

12ml

2 D l l
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Introducing the grand canonical ensemble partition funct
J in mean-field approximation

J5V exp~2bHMF!, ~2.15!

we define the grand-potential density

v[2
1

bN ln J52
1

bN ln V1
HMF

N 5v~T,m!ur l ,ml
,

~2.16!

whereb51/kBT (kB Boltzmann’s constant,T temperature!.
At fixed T, we may, thus, write

dv

dm
5(

l 51

z S ]v

]r l

dr l

dm
1

]v

]ml

dml

dm D1
]v

]m
. ~2.17!

At thermodynamic equilibriumv assumes a global mini
mum with respect to variations of the~sets of local! order
parametersr and m. The necessary condition for its exis
tence may be stated as (T5const)

]v

]r l
50, ~2.18a!

]v

]ml
50 ; l . ~2.18b!

From Eq.~2.17! this implies

dv

dm
5

]v

]m
52 r̄, ~2.19!

where the far right side follows from Eq.~A1! and r̄
[z21( l 51

z r l is the total mean density of the lattice gas. A
shown in the Appendix, Eqs.~2.18! lead to 2z coupled tran-
scendental equations which may be cast compactly as

g1~r l ,ml !5r l 111r l 21 , ~2.20a!

g2~r l ,ml !5r l 11ml 111r l 21ml 21 , l 51, . . . ,z,
~2.20b!

together with the boundary conditionsr05rz1150 @see Eq.
~2.8!# imposed by the infinitely repulsive core of the su
strates. The functionsg1 andg2 are defined in Eqs.~A5! and
~A4!, respectively.

III. NUMERICAL PROCEDURE

To solve Eqs.~2.20!, we resort to a numerical procedu
detailed below in Sec. III B. It requires suitable starting s
lutions which we obtain by first considering the limitT
02612
n

-

50. Since in this limit entropic contributions vanish, th
grand-potential density is given by the expression displa
in Eq. ~A6! which has to be evaluated for all possible phas
~i.e., morphologies! P of the confined binary mixture which
we shall identify promptly in Sec. III A.

A. The limit of vanishing temperature

To identify phases of confined binary mixtures atT50,
we begin by realizing that in our model two energetica
distinct groups of lattice sites can be distinguished: ‘‘wa
sites~subscriptw) l 51,z, where molecules of both specie
are surrounded by five nearest neighbors and are subje
the interaction with the substrate; ‘‘inner’’ sites~subscripti )
2< l<z21, where each molecule is surrounded by six ne
est neighbors but does not interact with either substrate.
T50, r i , andrw are discrete and can independently assu
the values 0~emptyx-y plane! and 1 ~completely occupied
x-y plane!. If the latter is true the plane in question can
occupied either by molecules of speciesA (mi,w51), B
(mi,w521), or by an equimolar mixture of both compo
nents (mi,w50).

Following the modular approach introduced by Bo
et al. @33#, the local order parametersr l andml at T50 have
to have the same value for all sitesl pertaining to the same
energetically distinct group of lattice sites. Thus, from a co
ceptual perspective it will prove sensible to define a phasP
as the set

P[$rw ,mwrw ,r i ,mir i%. ~3.1!

From the above considerations it then follows that 16 diff
ent phases arein principle conceivable at most in the limi
T50. They are summarized in Table I.

Since we are dealing with the special case of a symme
binary mixture, several phases~labeled by an asterisk in
Table I! may be neglected beforehand because they are
ergetically and structurally equivalent to one of the rema
ing entries in that Table. For example, entries two and f
are equivalent since it does not matter whether ‘‘inner’’ si
are occupied by molecules of speciesA or B because the two
are themselves indistinguishable. Similar logic prompts us
conclude that only ten out of the original 16 phases need
be considered explicitly, henceforth.

In principle, each phaseP a may coexist with another one
P b, say. Thus, 45 such pairs need to be considered explic
Mathematically speaking,P a andP b coexist at a chemica
potentialmab defined through the equation

va~mab!5vb~mab!, T50, ~3.2!

whereva andvb are obtained from Eq.~A6!. If va is the
global minimum of the grand-potential density,mx

ab[mab
2-4
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is the chemical potential at whichP a andP b are coexisting
phases in thermodynamic equilibrium with each other.

B. Nonvanishing temperatures

For T.0, we need to determine the sets of order lo
parametersr and m by solving Eqs.~2.20! simultaneously.
However, for nonvanishing temperatures both local densi
and mixing parameters are no longer discrete as befor
T50 but continuous on the intervals@0,1# and @21,1#, re-
spectively. A solution of Eqs.~2.20! may then be achieved
numerically adopting an iterative scheme detailed below.

Let us begin by reintroducing the set of~local! order pa-
rameters via the 2z-dimensional vector

x5S r1

m1

.

.

.

rz

mz

D . ~3.3!

Equations~2.20! can then be rewritten in vector notation a

f~x!5S g1~r1 ,m1!2r22r0

g2~r1 ,m1!2r2m22r0m0

.

.

.

g1~rz ,mz!2rz112rz21

g2~rz ,mz!2rz11mz112rz21mz21

D 50.

~3.4!

TABLE I. Lattice-gas phasesP at T50 @see Eq.~3.1!#. The
subscriptsw and i refer to sitesz51,z and 2<z<z21, respec-
tively. For symmetric binary mixtures phases labeled by an aste
are obsolete~see text!.

P rw mwrw r i mir i

1 0 0 0 0
2* 0 0 1 21
3 0 0 1 0
4 0 0 1 1
5* 1 21 0 0
6* 1 21 1 21
7* 1 21 1 0
8* 1 21 1 1
9 1 0 0 0
10 1 0 1 21
11 1 0 1 0
12 1 0 1 1
13 1 1 0 0
14* 1 1 1 21
15 1 1 1 0
16 1 1 1 1
02612
l

s
at

Suppose a solutionx0 of Eq. ~3.4! is already known for some
T0 andm0. We are then seeking a solutionx of Eq. ~3.4! for
a given

T5T01dT, ~3.5a!

m5m01dm. ~3.5b!

This new solution is obtained iteratively. ProvideddT and
dm are sufficiently small, a suitable iteration scheme can
obtained by first expandingf(x) in a Taylor series around
somexi truncated after the linear term, that is,

f~x!5f~xi !1“•f T~x!ux5xi
•~x2xi !1O~ ux2xi u2![0,

~3.6!

where the 2z-dimensional vector “[(]/]r1 ,
]/]m1 , . . . ,]/]rz ,]/]mz)

T. Equation~3.6! can be recast as

xi 1152~“•fT~x!ux5xi
!21

•f~xi !1xi . ~3.7!

Equation~3.7! is then iterated untiluf(xi)u<10211. One can
easily verify from the definition in Eq.~3.4! that the matrix
“•fT has band structure and can therefore be inverted
merically quite efficiently even ifz becomes large; note tha
in the limiting case of a bulk system“•fT is represented by
a 232 matrix on account of symmetry properties of th
bulk.

To locate the chemical potentialmab at which~metastable
or stable! phasesa andb ~represented byxa andxb, respec-
tively! coexist we expandv in a Taylor series

v~m,x!5v~m i ,x!1
dv

dm U
m5m i ,x

~m2m i !1O„~m2m i !
2
…

.v~m i ,x!2 r̄ i~m2m i !, ~3.8!

which we truncate after the linear term. In Eq.~3.8!, r̄ i is the
mean pore density defined in Eq.~2.19!.The chemical poten-
tial at coexistence is then estimated by solving

v~mab,xa!5v~mab,xb!, ~3.9!

for mab. From Eq.~3.8! and ~3.9!, we obtain an improved
estimate for the chemical potential at coexistence from

m i 11
ab 5

v~m i
ab ,xi

b!2v~m i
ab ,xi

a!

r̄ i
b2 r̄ i

a
1m i

ab , ~3.10!

wherexi
a , xi

b , r̄ i
a , andr̄ i

b are obtained from the final solu
tions of Eq.~3.7! for m i5m @see Eq.~3.5b!#. However, for
m i 11

ab , xi
a , and xi

b no longer satisfy Eq.~3.4!. Hence, we
replace in Eq.~3.5b!, m0 by m i and dm by dm5m i 11
2m i , solve Eq.~3.4! for xa andxb, and repeat the schem
just described untiludmu<10211. Finally, we return to Eq.
~3.5a! until the relevant temperature range has been cove

k

2-5
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IV. RESULTS

A. Phase diagram of binary bulk mixtures

We begin the discussion with bulk mixtures for which w
display in Fig. 1 characteristic phase diagrams for selec
values ofeAB . Henceforth, all quantities are expressed in
customary dimensionless~i.e., ‘‘reduced’’! units. That is, en-
ergies are given in units ofe, temperature in units ofueu/kB
(e<0). To realize a binary bulk mixture, we chooseeW
50, z51 in Eqs. ~A3!, ~A4!, and ~A6!, and replace the
hard-substrate boundary conditionsr05rz1150 by periodic
boundary conditionsr05rz115r1 to account for the sym-
metry of the bulk mixture. Equation~A6! is used in the limit
T50 which serves to provide suitable starting solutions
the iterative procedure detailed in Sec. III B.

Results plotted in Fig. 1 for various values ofeAB illus-
trate generic types of phase diagrams defined as the un

mx~T![øa,bmx
ab~T! ~4.1!

of coexistence linesmx
ab(T) between pairs of phasesa and

b. Bulk phase diagrams have also been discussed earlie
Wilding et al. @35#. These authors studied the phase behav
of a continuoussquare-well binary bulk mixture by means
Monte Carlo simulations and a mean-field approach.
eAB50.40 plots in Fig. 1~a! show that for temperaturesT
&1.32 only gas and demixed liquid coexist along a line
first-order phase transitions. This line ends at a tricriti
point located atm tri.21.75 andTtri.1.32. For tempera-
tures exceedingTtri , gas and demixed liquid coexist alon
the so-calledl line @i.e., a line of critical points indicated by
the thin solid line in Fig. 1~a!#. This type of phase diagram
resembles the one shown by Wildinget al. in their Fig. 1~c!
@35#.

For higher eAB50.5 the phase diagram differs qualit
tively from the previous one. This can be seen from Fig. 1~b!
where a bifurcation appears~i.e., at a triple point! for m tr.
22.25 andTtr.1.075 at which a gas phase coexists sim
taneously with both a mixed and a demixed fluid phase. C
sequently a critical point exists (mc.22.25,Tc.1.15) at
which the line of first-order transitions between mixed liqu
and gas states ends. The line of first-order transitions inv
ing mixed and demixed liquid states ends at a higher te
perature and chemical potential ofm tri.22.00 and Ttri
.1.18 and thel line is shifted towards lower temperature
as one can see from the plot in Fig. 1~b!. This type of phase
diagram comports with the one shown in Fig. 1~b! of Wild-
ing et al. @35#.

A further slight increase ofeAB to 0.56 does not cause th
phase diagram to changequalitatively but quantitatively
from the previously discussed case. This can be seen in
1~c!, where for eAB50.56 the triple point is shifted to a
lower temperature and chemical potential compared w
eAB50.50. Likewise, the line of first-order transitions b
tween gas and mixed liquid appears at lower chemical
tential but is somewhat longer since the critical point is
evated to a higherTc.1.18. The opposite is true for th
coexistence between mixed and demixed liquid phase
one can see from Figs. 1~b! and 1~c!.
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FIG. 1. Bulk phase diagramsmx(T) @see Eq.~4.1!#, whereG, M,
and D refer to one-phase regions of gaseous, mixed liquid,
demixed liquid phases, respectively. Pairs of neighboring pha
coexist for state points represented by solid lines where thick
thin lines refer to first-order and second-order phase transitio
respectively.~a! eAB50.40, ~b! eAB50.50, ~c! eAB50.56, ~d! eAB

50.70.
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Eventually, aseAB becomes sufficiently large, first-orde
transitions between mixed and demixed liquid phases dis
pear as the plot in Fig. 1~d! shows. Fore50.70 thel line
intersects a line of first-order phase transitions at a crit
end pointmCEP.22.55, TCEP.0.84 since the nature of th
participating phases along thel line differs from those in-
volved in the first-order transitions forT,TCEP or T
.TCEP. This type of phase diagram resembles the one p
ted in Fig. 1~a! in the paper of Wildinget al. @35#.

In the limit eAB51.0 the symmetric binary mixture de
generates to a pure fluid. In this caseTCEP→0 and thel line
becomes formally indistinguishable from them axis ~and
therefore physically meaningless!. The remaining coexist-
ence linemx

GL5235mx ~i.e., the phase diagram! involving
gas ~G! and liquid phases~L! becomes parallel with theT
axis and ends at the critical point whereTc5

3
2 (mc523) as

expected for the bulk lattice gas@36# ~see, for example, Fig
9 in Ref. @37#!.

B. Phase behavior of confined binary mixtures

If a fluid is confined to spaces of molecular dimension~s!
one expects their phase behavior to be altered from tha
their bulk counterpart in several significant ways. For e
ample, as far as pure fluids are concerned experiments@38#
and theoretical approaches@32# have repeatedly demon
strated that the gas-liquid critical point is shifted to low
critical temperatures and higher~average! densities of the
confined fluid. The effect is more pronounced the more
verely confined the fluid is~i.e., the smaller the pore width
is!.

In a confined binary mixture a similar confinemen
induced shift of the critical point is observed. This is app
ent from plots in Fig. 2 where the critical point involving ga
and mixed liquid phase is shifted to progressively lowerT
andm with decreasing pore widthz. For the present value o
eAB50.6 the phase diagram of the confined fluid correspo
to type III @see Fig. 2~a!# illustrated by the plot of the bulk
analog shown in Fig. 1~d!. Another confinement effect, tha
does not have any counterpart in pure fluids, can also be
from Fig. 2. It concerns a downward shift of the tricritic
point $Ttri ,m tri% with increasing degree of confinement~i.e.,
asz becomes smaller!.

For a given substrate separationz and eAB50.6 the
strength of the fluid-substrate interactioneW also has pro-
found consequences for bothTc andTCEP as plots in Fig. 2
show. From Fig. 2~b!, it is obvious that increasingeW causes
a depression ofTc for a given value ofz. The effect increases
with decreasing width of the slit pore. The depression ofTc
can be understood in terms of enhanced gas adsorption a
substrate surfaces with increasingeW . Thus, for a givenT
the mean densities of coexisting gas and mixed liquid pha
are less different the largereW becomes. Consequently,Tc ,
at which the two become identical by definition, decrea
with increasing fluid-substrate attraction~while holding z
constant!.

A similar confinement effect is observed for the critica
end-point temperature in Fig. 2~c!. Like Tc , TCEP first de-
creases witheW for each givenz @see curves foreW50.7, 1.0
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in Fig. 2~c!#. However, for largereW>1.0, TCEP increases
with the strength of the fluid-substrate attraction. Both tren
can be understood in terms of a competition between
tropic versus energetic effects as we shall discuss below
Sec. V. The increase ofTCEP with eW reflects enhanced de
composition of the confined fluid since a higherTCEPreduces
the size of the one-phase region of mixed fluid phases r
tive to the one-phase region of demixed states. Howe
compared with the confinement-induced shift ofTc the im-
pact of varyingeW is quite small forTCEP. It is furthermore
gratifying that the confinement-induced depression ofTc and
TCEP diminishes rather quickly asz→` so that a smooth
extrapolation of our results to the bulk limit is achieved.

FIG. 2. ~a! As Fig. 1, but for various degrees of confineme
~i.e., z) indicated in the figure where (l) denote the tricritical and
(d) the critical point, respectively (eAB50.6,eW51.0); ~b! critical
temperatureTc versus inverse pore width for various values ofeW

indicated in the figure;~c! as~b!, but for critical-end-point tempera
ture TCEP.
2-7
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If, on the other hand, a smallereAB50.4 is concerned, a
thermodynamically stable mixed liquid phase is absent
we are dealing with a phase diagram of type I@see Fig. 1~a!#.
If the fluid-substrate interaction is weakly attractive@eW
50.1, see Fig. 3~a!#, a gaseousphase coexists with a dens
demixedliquid phase up to the tricritical point where the tw
become indistinguishable.

However, for a larger fluid-substrate attractioneW51.15
the plot in Fig. 3~b! exhibits a bifurcation at the triple poin
m tr.22.47, Ttr.0.87. ForT<Ttr gas coexists with a de
mixed film of finite thickness adsorbed on either substra
whereas forT.Ttr gas still coexists with demixed fluid
along the respective coexistence linesmx

GDF(T) andmx
GD(T)

in Fig. 3~b!. The demixed film eventually undergoes cap
lary condensation to a demixed fluid ifm.mx

DFD(T) along
an isothermT,Ttr . Thus, as shown in Fig. 3~b! the demixed
wetting film is thermodynamically stable over a narro
range of chemical potentials.

If eW increases further to a value of 1.3@see Fig. 3~c!#,
say, the triple point of gas, demixed film, and demixed flu
disappears. Instead a second tricritical point appears atm tri
.22.52, Ttri.0.91 involving gas and demixed film. At thi
triple point al line appears which intersects the coexisten
line between demixed fluid and the~now indistinguishable!
gas and demixed film at the critical end pointmCEP.
22.30, TCEP.1.02. ForT.TCEP gas and demixed fluid co
exist for thermodynamic states represented by the thick s
line in Fig. 3~c!. These latter phases become indistingui
able at the tricritical pointm tri.21.92, Ttri.1.26 where a
secondl line begins.

For even largereW53.0 the plot in Fig. 3~d! indicates that
the critical end point has disappeared. The coexistence
between gas and demixed film is shifted to lower chem
potentials ending at a tricritical point where al line starts
that does no longer intersect the line of first-order transiti
between a demixed film and the demixed fluid. This line n
ends at a true critical pointmc.22.00, Tc.1.23 where the
latter two become indistinguishable. To verify that the t
point mc.22.00, Tc.1.23 is a legitimate critical point we
numerically analyzed the order parameterr̄D2 r̄DF which
follows a scaling law (12T/Tc)

b as T→Tc
2 . As expected

our analysis gives the mean-field valueb. 1
2 for the critical

exponent.

C. Confinement-controlled decomposition of binary mixtures

In the preceding Sec. IV B system parameters were c
sen such that the type of the phase diagram remained u
tered upon a variation of one or more of these paramet
However, by varying the degree of confinement~i.e., z) it is
also possible to switch between various types of phase
grams with profound consequences for liquid-liquid and g
liquid phase equilibria which may have practical implic
tions for the decomposition of mixtures of immiscib
liquids.

Consider as an example the caseeAB50.5 for which the
bulk phase diagram is plotted in Fig. 4~a!. It consists of a line
of first-order phase transitions involving gaseous and
mixed liquid states forT&1.08. At Ttr.1.08 the phase dia
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gram bifurcates into a line of first-order phase transitio
between gaseous and mixed liquid states ending at the c
cal pointmc.22.25, Tc.1.13 and a line of first-order tran
sitions involving mixed and demixed liquid states. The lat

FIG. 3. As Fig. 1 but for various strengths of fluid-substra
attraction,eAB50.4, andz510. ~a! eW50.10, ~b! eW51.15, ~c!
eW51.30, ~d! eW53.00.
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ends at the tricritical pointm tri.22.04 and Ttri.1.16.
Hence, for the present choice of model parameters the
phase diagram is of type II@see Figs. 1~b! and 1~c!#. If this
binary mixture is now confined to a relatively wide slit por
the phase diagram remains of type II but the plot referring
z512 in Fig. 4~a! clearly shows the confinement-induce
downward shift of coexistence lines and the displacemen
characteristic~i.e., triple, critical, and tricritical! points dis-
cussed in the preceding section. However, if the degree
confinement becomes more severe@see plot forz56 in Fig.
4~a!# the character of the phase diagram changes from typ
to I according to the classification scheme developed on
basis of Figs. 1~b! and 1~a!, respectively. In other words, b
going from z512 to z56 the mixed liquid vanishes as
thermodynamically stable phase, while the entire phase
gram is further shifted to lower chemical potentials. Th
latter trend persists if the pore width is reduced even m
with no further change in the type of phase diagram.

If one then fixes the thermodynamic state such that
bulk mixture is a gas@represented by* in the inset in Fig.
4~a!#, confinement to a relatively wide pore~i.e.,z512) may
first cause capillary condensation to a mixed liquid mixtu
analogous to ordinary capillary condensation in pure flui
If the fluid is confined to a narrower pore (z56), however,
decomposition intoA-rich andB-rich liquid phases is trig-

FIG. 4. ~a! As Fig. 1, where the inset is an enhanced repres
tation of that part of the phase diagrams bounded by the box w
fixed thermodynamic state represented by *.~b! Mean pore density

r̄ as a function of pore widthz where stability limits between pair
of phases are demarcated by vertical lines; also shown are h
grams of the local density of representative phases where the s
ing of the bars refers tor l

A andr l
B , respectively.
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gered by confinement upon condensation. Thus, by choo
an appropriate pore width one can either promote conde
tion of a gas to a mixed liquid phase or, alternatively, initia
liquid-liquid phase separation in the porous matrix whe
both processes are solely confinement driven since the
walls are nonselective for molecules of either species in
present model.

This process is further illustrated by the plots in Fig. 4~b!

where the mean densityr̄ of thermodynamically stable con
fined phases is plotted as a function ofz ~i.e., the pore
width!. Three different branches are discernible. For sm
z,8, r̄ is relatively high indicating that the pore is fille
with liquid. A corresponding plot of the local densities of
representative phase forz55 shows that this liquid consist
locally of A- ~or B-!rich, high-density fluid~since the two
cannot be distinguished in a symmetric mixture!. Hence, for
z,8 we observe~local! decomposition of liquid mixtures
Along an intermediate branch of pore widths, that is, for
,z,16, r̄ is somewhat smaller than for the tightest por
(z,8). An inspection of a prototypical plot of the local den
sities forz512 reveals that the confined phase now cons
of a locally equimolar mixture. Hence, for intermediate po
sizes the confined phase is a mixed liquid. Finally, forz

.16, r̄ is still smaller than along the two previously dis
cussed branches. The local density of a representative
for z520 now clearly shows that a comparatively low
density fluid exists at the center of the pore. As either s
strate is approached the density increases indicating that
mixture wets the substrates. However, as expected for su
‘‘gas’’ state the fluid is composed locally of an equimol
mixture similar to states along the intermediate branch
,z,16. The change ofr̄ between a pair of branches
discontinuous at characteristic pore widths where the fi
order transitions occur between these phases.

V. SUMMARY AND CONCLUSIONS

In this work, we investigate the phase behavior of a sy
metric binary mixture confined to slit pores with chemica
homogeneous, planar substrate surfaces. The substrate
nonselective, that is, the strength of the fluid-substrate in
action for molecules of componentA is identical to that for
molecules of componentB. The dimensionality of configu-
ration space is reduced by restricting positions of fluid m
ecules to sites on a simple-cubic lattice. Moreover, the in
action between fluid molecules and between a fluid molec
and the substrates is governed by square-well poten
where the widths of the attractive wells is chosen such t
only nearest-neighbor interactions are accounted for.

In addition to discretization, we employ a mean-field a
proximation to the Hamiltonian governing our lattice-g
model which is expected to be sufficiently realistic for o
present purposes@34#. When it comes to fluid~i.e., gas or
liquid! phases, discretization of configuration space mi
seem somewhat problematic at first sight. However, lat
models have been employed frequently to investigate gen
features of fluid phases in the past even if much more co
plex polymeric systems are considered@34,39,40#. Perhaps
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the greatest advantage of mean-field lattice-gas mode
that they permit to calculate entire phase diagrams with c
parably little computational effort even for rather compl
model systems@33,41#. This aspect is particularly importan
in the context of this work where the parameter space,
which our model is defined, is rather highly dimensional.

To reduce the dimensionality of the parameter space
restrict this study to symmetric binary mixtures characteriz
by eAA5eBB , thus permitting only the cross interaction b
tween molecules of speciesA andB to vary in order to pro-
mote either mixing (eAB.1) or decomposition (eAB,1).
Moreover, we fixmA5mB to reduce the number of relevan
model parameters even further.

Based upon a modular approach introduced by Bocket al.
@33#, we can then determine the complete set of phases~i.e.,
occupation-number patterns! of the binary mixture atT50.
These phases serve as suitable starting solutions for the
merical minimization of the grand potential forT.0, which
eventually permits us to determine complete phase diagr
of bulk and confined binary mixtures over the entire te
perature range~see Sec. III!.

By varying eAB , we determine essentially three differe
generic types of bulk phase diagrams. In mixtures pertain
to type I, ~mixed! gas and demixed liquid mixtures coexi
along a line of first-order phase transitions up to the tricr
cal point at which the transition between these two pha
becomes second order for allT>Ttri ~i.e., along the so-called
l line!. A mixed liquid does not occur as a thermodynam
cally stable phase due to the relatively low value ofeAB
characteristic of mixtures of type I@see Fig. 1~a!#.

For intermediate values ofeAB the phase diagram is o
type II where now a mixed liquid arises as a third therm
dynamically stable phase. In mixtures of type II, this mix
liquid may coexist with either demixed liquid or gas phas
independently. Thus, besides a tricritical point involving no
mixed and demixed liquid phases, a critical point exists
which gaseous and mixed liquid phases become indis
guishable@see Fig. 1~b!#.

A third type of phase diagrams exists for sufficiently lar
values ofeAB . Phase diagrams of type III are characteriz
by the existence of gaseous, mixed, and demixed liquid
thermodynamically stable phases. However, lines of fi
order phase transitions exist only between gas and dem
liquid on one hand and gas and mixed liquid on the ot
hand; the transition between mixed and demixed liq
phases is always second order along thel line @see Fig.
1~d!#. Thel line now terminates at a critical end point whe
it meets the lines of first-order transitionsmx

GD(T) and
mx

GM(T).
The three types of phase diagrams for symmetric bin

bulk mixtures comport qualitatively with the general clas
fication scheme proposed earlier by Wildinget al. for a re-
lated model@35#. Since these authors employed a continuo
model, quantitative differences between their and our ph
diagrams are inevitable. More important, however, is
qualitative agreement between the results obtained by W
ing et al. and us, since it allows us to conclude that t
general features of phase diagrams of type I–III are ind
generic, that is, model-independent, as far as symmetric
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nary mixtures of simple fluids are concerned.
In the context of confined binary mixtures, we focus on

variation of both the degree of confinement~i.e., the width of
the slit porez) and the ‘‘wettability’’ of the substrates~i.e.,
the strength of the fluid-substrate interactioneW) disregard-
ing deliberately a detailed discussion of wetting phenom
to which we shall turn our attention in a separate publicat
@42#. Generally speaking, confinement causes a depressio
both critical and critical-end-point temperatures providedeW
is large enough for the latter to exist@see Fig. 3~a!#. In this
case varyingeW for fixed pore widthz causes an additiona
depression ofTc @see Fig. 2~b!#; the opposite but much
smaller trend is observed forTCEP with increasingeW at
fixed z @see Fig. 2~c!#. Both effects seem plausible if on
realizes that the mean density of the gas phase in coexist
with a mixed liquid phase increases on account of more p
nounced adsorption of the gas at the substrate for largereW .
In other words, the largereW the lower the temperatureTc at
which gas and mixed liquid phase become indistinguisha
Likewise, at the critical end point, mixed and demixed liqu
phases are indistinguishable from gaseous phases of a
sity increasing witheW . Since the pore wall is nonselectiv
for either component and because of our present choic
eAB50.6, which promotes decomposition, it seems obvio
that the stronger the substrate attracts fluid molecules
larger is the tendency of the confined mixture to decomp
as reflected by a somewhat largerTtri . This is because once
a molecule of either component is adsorbed by the pore w
it is energetically more favorable to surround it by other li
molecules. Entropically, the opposite would be true wh
means that for the present choice of parameters propertie
the confined phase are controlled by energetic rather t
entropic effects. This is no longer so ifeW50.7 whereTCEP
for a given value ofz is intermediate to the curves pertainin
to eW51.0 andeW51.3 and in Fig. 2~c!. In this case, attrac-
tion by the walls is too weak and the entropic effects ‘‘win
over the energetic ones so that the walls now favor mixing
the two components rather than decomposition. However,
effects are rather small as a comparison of Figs. 2~b! and 2~c!
shows.

Another, more significant finding concerns strong flui
substrate attraction and is illustrated by the plot in Fig. 3~d!
wheremx

DFD(T) ends at a true critical point. This is remark
able because the~mean! density of the demixed film~DF!
adsorbed on the substrates is relatively low so that ordina
one would anticipate a thermodynamically stable mix
phase. This phenomenon, to the best of our knowledge,
not been reported previously.

Perhaps the most significant finding of the present w
concerns confinement-induced changes in the type of ph
diagram describing the confined fluid mixture. As illustrat
in Fig. 4 by varyingz for fixed and suitably chosen values o
eAB and eW it is not only possible to shift all coexistenc
lines to lowerm but also to switch from a phase diagram
type II to one of type I, that is to eliminate mixed liquids a
thermodynamically stable phases~see Fig. 4!. This may have
important repercussions for the decomposition of bin
mixtures in sorption experiments where one may envis
pore condensation in nanoscopic solid matrices leading
2-10
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ther to a mixed or demixed liquid phase depending solely
the pore width.
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APPENDIX A: DERIVATION OF EQS. „2.18…

An explicit expression forv is obtained by inserting Eqs
~2.10! and ~2.14! into Eq. ~2.16! which yields

v~T,m!52
1

bz (
l 51

z F2r l ln r l2~12r l !ln~12r l !1r l ln 2

2
r l

2
$~11ml !ln~11ml !1~12ml !ln~12ml !%G

1
1

z (
l 51

z

r lF e

4
$r l 11~11mlml 11!1r l 21

3~11mlml 21!14r l~11ml
2!%

1
eAB

4
$r l 11~12mlml 11!1r l 21~12mlml 21!

14r l~12ml
2!%G2

1

z (
l 51

z

r lm1
eW

z
~r11rz!.

~A1!

Employing Eq.~A1! in Eq. ~2.18! a set of 2z coupled tran-
scendental equations, namely,

05
1

2b
ln

11ml

12ml
1

e2eAB

2
~r l 11ml 111r l 21ml 2114r lml !,

~A2a!

m̄[m1b21ln 25b21F ln
r l

12r l
1

1

2
$~11ml !ln~11ml !

1~12ml !ln~12ml !%G1
e1eAB

2
~r l 111r l 2114r l !

1
e2eAB

2
ml~r l 11ml 111r l 21ml 2114r lml !

1eW~d1l1dzl!, ~A2b!

is obtained after somewhat lengthy but straightforward al
bra whered i j denotes the Kronecker symbol. We can so
Eqs.~A2! by first reorganizing Eq.~A2b! such that
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r l 11

e1eAB

2
2mlml 11r l 11

eAB2e

2

5m̄2b21F ln
r l

12r l
1

1

2
$~11ml !ln~11ml !

1~12ml !ln~12ml !%G2
e1eAB

2
~r l 2114r l !

1
eAB2e

2
ml~r l 21ml 2114r lml !1eW~d1l1dzl!. ~A3!

Likewise, we may rewrite Eq.~A2a! as

r l 11ml 111r l 21ml 2152
1

b~e2eAB!
ln

11ml

12ml
24r lml

[g2~r l ,ml !. ~A4!

Inserting now Eq.~A4! into Eq. ~A3!, we eventually obtain

r l 111r l 215
2m̄

e1eAB
2

2

b~e1eAB! F ln
r l

12r l
2

ml

2
ln

11ml

12ml

1
1

2
$~11ml !ln~11ml !1~12ml !ln~12ml !%G

24r l2
2eW

e1eAB
~d1l1dzl![g1~r l ,ml !. ~A5!

Note that bothr l and ml are continuous on the interval
@0,1# and @21,1#, respectively.

In the limit of vanishing temperature (1/b50), on the
other hand, entropic contributions tov vanish and one has
from Eq. ~A1!

v~0,m!5
1

z (
l 51

z

r lF e

4
$r l 11~11mlml 11!

1r l 21~11mlml 21!14r l~11ml
2!%

1
eAB

4
$r l 11~12mlml 11!1r l 21~12mlml 21!

14r l~12ml
2!%G2

1

z F(
l 51

z

r lm2eW~r11rz!G ,

~A6!

where the mean density atT50, r l50,1 is a double-valued
discrete quantity since a given planel can only be occupied
or empty. Forr l50, ml50 is the only sensible possibility
If, on the other hand,r l51, ml50,61 is triple-valued de-
pending on whether this particular site is occupied by
equimolar mixed liquid (ml50), pure componentA (ml
51), or pure componentB (ml521).
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